Robust spectrotemporal decomposition by iteratively reweighted least squares.

نویسندگان

  • Demba Ba
  • Behtash Babadi
  • Patrick L Purdon
  • Emery N Brown
چکیده

Classical nonparametric spectral analysis uses sliding windows to capture the dynamic nature of most real-world time series. This universally accepted approach fails to exploit the temporal continuity in the data and is not well-suited for signals with highly structured time-frequency representations. For a time series whose time-varying mean is the superposition of a small number of oscillatory components, we formulate nonparametric batch spectral analysis as a Bayesian estimation problem. We introduce prior distributions on the time-frequency plane that yield maximum a posteriori (MAP) spectral estimates that are continuous in time yet sparse in frequency. Our spectral decomposition procedure, termed spectrotemporal pursuit, can be efficiently computed using an iteratively reweighted least-squares algorithm and scales well with typical data lengths. We show that spectrotemporal pursuit works by applying to the time series a set of data-derived filters. Using a link between Gaussian mixture models, l1 minimization, and the expectation-maximization algorithm, we prove that spectrotemporal pursuit converges to the global MAP estimate. We illustrate our technique on simulated and real human EEG data as well as on human neural spiking activity recorded during loss of consciousness induced by the anesthetic propofol. For the EEG data, our technique yields significantly denoised spectral estimates that have significantly higher time and frequency resolution than multitaper spectral estimates. For the neural spiking data, we obtain a new spectral representation of neuronal firing rates. Spectrotemporal pursuit offers a robust spectral decomposition framework that is a principled alternative to existing methods for decomposing time series into a small number of smooth oscillatory components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Object Detection via Robust Low Rank Matrix Decomposition with IRLS Scheme

Moving object detection is a key step in video surveillance system. Recently, Robust Principal Components Analysis (RPCA) shows a nice framework to separate moving objects from the background when the camera is fixed. The background sequence is then modeled by a low rank subspace that can gradually change over time, while the moving objects constitute the correlated sparse outliers. In this pap...

متن کامل

On the Properties of Preconditioners for Robust Linear Regression

In this paper, we consider solving the robust linear regression problem, y = Ax+ ε by Newton’s method and iteratively reweighted least squares method. We show that each of these methods can be combined with preconditioned conjugate gradient least squares algorithm to solve large, sparse, rectangular systems of linear, algebraic equations efficiently. We consider the constant preconditioner A A ...

متن کامل

Beyond Multi-view Stereo: Shading-Reflectance Decomposition

We introduce a variational framework for separating shading and reflectance from a series of images acquired under different angles, when the geometry has already been estimated by multi-view stereo. Our formulation uses an l-TV variational framework, where a robust photometric-based data term enforces adequation to the images, total variation ensures piecewise-smoothness of the reflectance, an...

متن کامل

2-D Iteratively Reweighted Least Squares Lattice Algorithm and Its Application to Defect Detection in Textured Images

Abstract In this paper, a 2-D iteratively reweighted least squares lattice algorithm, which is robust to the outliers, is introduced and is applied to defect detection problem in textured images. First, the philosophy of using different optimization functions that results in weighted least squares solution in the theory of 1-D robust regression is extended to 2-D. Then a new algorithm is derive...

متن کامل

Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and some Robust and Resistant Alternatives

The scope of application of iteratively reweighted least squares to statistical estimation problems is considerably wider than is generally appreciated. It extends beyond the exponential-family-type generalized linear models to other distributions, to non-linear parameterizations, and to dependent observations. Various criteria for estimation other than maximum likelihood, including resistant a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 50  شماره 

صفحات  -

تاریخ انتشار 2014